Original Russian Text Copyright @ 2001 by Mamedov, Nabieva, Dzhafarova.

Synthesis and Transformations of Norbornyl Acrylates

M. K. Mamedov, E. K. Nabieva, and E. N. Dzhafarova

Institute of Petrochemical Processes, Academy of Sciences of Azerdaidzhan, Baku, 370025 Azerdaidzhan

Received September 26, 2000

Abstract—A simple and more environmentally friendly procedure than that traditionally used was developed for preparation of esters consisting in acrylic acid addition to bicyclo[2.2.1]hept-2-ene and its 5-alkyl derivatives. The acrylates obtained were subjected to hydrogenetion followed by hydrolysis of propionic acid esters. A number of new compounds was obtained; some among them possess a pleasant odor.

Esters of cyclic alcohols and acrylic acid are successfully used as monomers for plastics [1, 2], efficient adhesive for dental prostheses [3], compounds for protection from the action of UV light and paint binder at electronic printing [4], and also in preparation of nonaqueous polymer materials [5].

We developed a simple and more environmentally friendly procedure than that traditionally used for preparation of acrylic acid esters by thermal addition of the acid to bicyclo[2.2.1]hept-2-ene and its 5-exoalkyl derivatives. The initial bicycloolefins were obtained by isomerization of a mixture of the *endo* and *exo* isomers in the presence of AlCl₃ in dichloromethane solution.

R = H (I), Me (II), Et (III), *i*-Pr (IV), Pr (V), Bu (VI).

Acrylic acid same as saturated monocarboxylic acids [7–9] stereoselectively adds at heating without catalyst to bicyclo[2.2.1]hept-2-ene to yield an *exo* isomer of ester **I**. Compound **I** smells of pleasant odor with fruit tint and may be used as a component of synthetic perfumes.

The investigation of the composition and purity of the esters obtained by GLC revealed that the thermal addition of acrylic acid to the 5-exo-alkyl derivatives of norbornene resulted in formation of 5-exo-alkyl-bicyclo[2.2.1]hept-2-yl exo-acrylates (II-VI) as 92–94% of the product and 6-exo-alkylbicyclo[2.2.1]-hept-2-yl exo-acrylates as 6-8% in the ratio 93:7. We used in reaction hyroquinone as inhibitor to

prevent the radical polymerization of the acrylic acid at heating. The conditions of reaction and reagents ratio were optimized for ester formation; the best conditions were as follows: temperature 170°C, molar ratio of bicyclic olefins to acrylic acid 1:1.25, reaction time 3 h, hydroquinone in amount of 0.1 wt% to acrylic acid. Under these conditions the yields of acrylates reach 54–75%.

Alkyl substituents in the 5-position negatively affect the reactivity of the π -bond in the bicyclo-[2.2.1]hept-2-ene ring. The longer is the hydrocarbon chain of the alkyl substituent, the lower is the yield of the corresponding acrylate:

Aiming at preparation of propionic acid esters with saturated bicyclic alcohols hydrogenation of acrylates **I-VI** was performed in the presence of Ni on kieselguhr as catalyst. The hydrogenated esters were also subjected to hydrolysis by 20% NaOH solution

R = H(I, VII, XIII), Me(II, VIII, XIV), Et(III, IX, XV), *i*-Pr(IV, X, XVI), Pr(V, XI, XVII), Bu(VI, XII, XVIII).

Compd.	\mathbf{H}^{I}	H^2	H^3	H^4	H^5	H^6	\mathbf{H}^7	H^8	H ⁹	H ¹⁰
I II VII VIII XIII XIV	2.20 2.20 2.45 2.12 2.50 2.55	4.60 4.60 4.75 4.72 4.05 4.15	1.40 1.45 1.30 1.48 1.48	2.20 2.25 2.45 2.12 2.55 2.60	1.0 5.0 1.9 5.1 1.9 3.9	1.10 1.15 1.40 1.90 1.40 1.90	1.13 1.15 1.00 1.30 1.30 1.30	6.23 6.18 2.25 2.37 4.70 4.65	5.75 5.76 1.10 1.27 - 1.10	0.85 - 1.14

Table 1. ¹H NMR spectra of compounds synthesized, δ , ppm

Table 2. Yields, physical properties and elemental analyses of norbornyl acrylates I-VI

Compd.	Yield, %	bp, °C (30 mm Hg)	d_4^{20}	n_D^{20}	Found, %		Formula	Calculated, %	
					С	Н	l Ormula	С	Н
I	75	108	1.0318	1.4740	72.24	8.46	$C_{10}H_{14}O_2$	72.26	8.89
II	68	117-118	0.9966	1.4755	73.29	8.91	$C_{11}^{10}H_{16}^{10}O_2$	73.30	8.94
III	65	136-137	0.9863	1.4785	74.17	9.30	$C_{12}H_{18}O_2$	74.19	9.33
IV	59	116-117	0.9710	1.4792	74.90	9.61	$C_{13}H_{20}O_2$	74.96	9.67
${f V}$	60	159-160	0.9827	1.4804	74.92	9.65	$C_{13}H_{20}O_2$	74.96	9.67
VI	54	179–180	0.9821	1.4860	75.60	9.95	$C_{14}H_{22}O_2$	75.63	9.97

along the known procedure [10]. We obtained as a result norbornyl propionates **VII–XII** in 94–95% yield and bicyclic alcohols **XIII–XVIII** in 96–98% yield.

The purity of compounds synthesized after distillation was 99–99.8%. Their isomeric composition and structure was investigated by means GLC, IR, and NMR spectroscopy. In the IR spectra of all acrylates appears a strong band in the 970 cm⁻¹ region characteristic of an *exo* isomer. The absorption in the region 1725–1730 and 1240–1245 cm⁻¹ evidences the presence of ester groups in the molecules, and the absorption bands at 815 and 890 cm⁻¹ in combination with a band at 1640 cm⁻¹ prove the presence of a vinyl group.

¹H NMR spectra of some compounds synthesized are presented in Table 1.

As seen from Table 1, in the spectra of acrylates **I, II** are observed signals at 5.75–6.23 ppm characteristic of vinyl protons; in the spectra of alcohols **XIII, XIV** appear the signals of hydroxy group protons at 4.65–4.70 ppm; the *endo*-protons H² and H⁵ resonate in the 4.0–5.0 ppm region.

EXPERIMENTAL

The conditions used for GLC analysis and recording of ¹H, ¹³C, and IR spectra were described in our preceding communication [8].

As initial compounds were used the following bicyclo hydrocarbons: bicyclo[2.2.1]hept-2-ene, 5-methyl-, 5-ethyl-, 5-isopropyl-, and 5-butylbicyclo-[2.2.1]hept-2-enes. The compounds were obtained by condensation of olefins with cyclopentadiene [11]. The acrylic acid applied corresponded to specifications TU 6-09.413-83.

The synthesis of acrylates and their hydrogenation were carried out in a rotating pressure reactor of stainless steel; the hydrolysis of propionates was performed in the common glass vessels.

2-exo-Bicyclo[2.2.1]heptyl acrylate (I). A mixture of 47.1 g of norbornene, 45 g of acrylic acid, and 0.045 g of hydroquinone was heated in the pressure reactor to 170°C for 3 h. The fractional distillation of the resulting mixture afforded 61.9 g (75%) of compound **I**.

Compounds **II-VI** were prepared similarly (Table 2).

2-exo-Bicyclo[2.2.1]heptyl propionate (VII). A mixture of 33.2 g of compound I, 3.32 g of catalyst Ni on kieselguhr activated in a flow of hydrogen, and 0.33 g of hydroquinone was charged in the pressure reactor, and hydrogen was fed in to the pressure of 100 atm. The reactor was heated to 120°C for 2.5 h. After the hydrogen was no long consumed the

Compd.	Yield, %	bp, °C (30 mm Hg)	d_4^{20}	n_D^{20}	Found, %		Formula	Calculated, %	
					С	Н	Tormula	С	Н
VII	94	109.5	0.9996	1.4596	71.32	9.56	$C_{10}H_{16}O_2$	71.39	9.58
VIII	96	119-120	0.9894	1.4620	72.45	9.93	$C_{11}H_{18}O_2$	72.49	9.95
IX	98	137.0-137.5	0.9884	1.4630	73.40	10.25	$C_{12}H_{20}O_2$	73.43	10.27
X	96	145-146	0.9760	1.4600	74.20	10.51	$C_{13}H_{22}O_2$	74.24	10.54
XI	97	156.5-157.0	0.9868	1.4655	74.20	10.50	$C_{13}H_{22}O_2$	74.24	10.54
XII	98	177–178	0.9876	1.4666	75.60	10.74	$C_{14}H_{24}O_2$	75.63	10.78
	I	I		ı	ı	ı	ı	ı	ı

Table 3. Yields, physical properties and elemental analyses of norbornyl propionates VII-XII

Table 4. Yields, physical properties and elemental analyses of bicyclic alcohols XIII-XVIII

Compd.	Yield, %	bp, °C (30 mm Hg)	d_4^{20}	n_D^{20}	Foun	d, %	Formula	Calculated, %	
no.	1 icia, 70				С	Н		С	Н
XIII	98	a	-	_	74.91	10.72	$C_7H_{12}O$	74.95	10.78
XIV	97	73-74	0.9988	1.4826	76.11	11.16	$C_8H_{14}O$	76.14	11.18
XV	94	98-99	0.9950	1.4836	77.00	11.50	$C_9H_{16}O$	77.08	11.50
XVI	94	122-123	0.9875	1.4890	77.81	11.72	$C_{10}H_{18}O$	77.86	11.76
XVII	95	117-118	0.9745	1.4790	77.72	11.72	$C_{10}H_{18}O$	77.86	11.76
XVIII	95 L	142-143	0.9738	1.4896	78.50	11.94	C ₁₁ H ₂₀ O	78.51	11.97

^a Melting point of compound **XIII** 127°C is consistent with the published data [12].

catalyst was filtered off, and the reaction mixture was subjected to fractional distillation. Compound **VII** was obtained in 94% yield.

Compounds **VIII–XII** were prepared in the similar way (Table 3).

2-exo-Bicyclo[2.2.1]heptanol (**XIII**). To a mixture of 16.8 g of compound **VII** and 25 ml of ethanol at heating to 70°C while vigorous stirring was added within 1 h 20 ml of 20% NaOH solution. The stirring was continued for 1 h more. The reaction mixture was extracted with ether, the extract was dried with anhydrous CaCl₂, the solvent was distilled off. We obtained 11 g (98%) of compound **XIII**.

Bicyclic alcohols **XIV-XVIII** were prepared in the similar way; their characteristics are given in Table 4.

REFERENCES

- 1. Tekhnologiya plasticheskikh mass (Plastics Technology), Korshak, V.V., Ed., Moscow: Khimiya, 1972, pp. 50-70.
- 2. Emel'yanov, N.P., Naumova, L.V., and Koz-

- lov, N.S., *Dokl. Akad. Nauk Belarus. SSR*, 1967, vol. 2, no. 2, pp. 140–144.
- 3. Golding, B., *Khimiya i tekhnologiya polimernykh materialov* (Chemistry and Technology of Polymeric Materials), Leningrad: Khimiya, 1963, p. 422.
- 4. Japan Patent 61-53242, 1986; *Ref. Zh. Khim.*, 1986, 9N66P.
- Japan Patent 60-226513, 1986; Ref. Zh. Khim., 1986, 19869P.
- 6. Sadykhov, Sh.G., Gumbatov, E.G., Mamedov, A.A., and Musaeva, F.M., *Azerb. Khim. Zh.*, 1983, no. 3, pp. 57–59.
- 7. Mamedov, M. K., *Neftekhimiya*, 1997, vol. 37, no. 1, pp. 76–80.
- 8. Mamedov, M. K., *Zh. Org. Khim.*, 1997, vol. 33, no. 2, pp. 192–196.
- 9. Mamedov, M. K., *Azerb. Khim. Zh.*, 1998, no. 3, pp. 74–78.
- 10. Mamedov, M. K., *Zh. Org. Khim.*, 1998, vol. 34, no. 2, pp. 206–210.
- 11. Mamedov, M. K., *Neftekhimiya*, 1991, vol. 31, no. 3, pp. 350–354.
- 12. Komppa, G. and Beckmann, E., *Lieb. Ann.*, 1934, vol. 512, p. 181.